新澳门六合彩内幕信息

FFAR Grant to Help Improve Vineyard Soil Health

News
View of grapevines
View of a 新澳门六合彩内幕信息 Davis vineyard. (Gregory Urquiaga, 新澳门六合彩内幕信息 Davis)

Wine grapes are susceptible to subtle changes in temperature and precipitation, making them particularly vulnerable to the effects of climate change. 

Regenerative agriculture, which uses holistic farming and grazing practices to strengthen soil health and crop productivity, may help grape vines become more resilient to changing climate conditions. However, more research is needed to increase adoption of regenerative agriculture practices on vineyards.

Head shot of Cristina Lazcano, soil scientist, in black jacket, white shirt, folded arms, with vines in background
新澳门六合彩内幕信息 Davis assistant professor of soils and plant nutrition. (Courtesy Cristina Lazcano)

The  (FFAR) awarded a $999,003  grant to the University of California, Davis to assess the effects of regenerative practices on vineyard soil health.  provided matching funds for a $2.6 million total investment.

Regenerative agriculture can help sequester atmospheric carbon dioxide as soil organic matter, playing a key role in climate change mitigation. Regenerative agriculture proposes the 鈥渟tacking鈥 of well-known soil conservation practices, such as compost, no-till and cover crops, to take advantage of synergies and maximize benefits to soil health. This technique often includes reintegrating crop and livestock production. For wine grapes, that typically involves bringing sheep to vineyards.

However, the impact of soil health practices on vineyards remains difficult to predict due to various factors, including management strategies, climate and soil type, all of which can influence carbon sequestration potential.

Building soil carbon and soil health

Led by  at 新澳门六合彩内幕信息 Davis, a multidisciplinary team of researchers from 新澳门六合彩内幕信息 Davis, ,  is examining how well regenerative agriculture can build soil carbon and soil health in vineyards and its effects on crop yield, grape and wine quality.

鈥淲oody perennial crops like wine grapes have large potential to sequester carbon and mitigate climate change,鈥 said Lazcano, an associate professor in the 新澳门六合彩内幕信息 Davis Department of Land, Air and Water Resources. 鈥淏ecause of this, the wine grape industry is uniquely positioned to spearhead efforts in regenerative agricultural management. We are proud to contribute to the development of science-based best management practices to support the sustainability efforts of the wine grape industry.鈥

Lazcano and team are establishing reliable sampling methods to determine changes in soil carbon abundance within vineyards. The team is examining the relationship between historical soil management and soil carbon to estimate the carbon abatement potential of regenerative management in vineyards of the U.S. West Coast. They are also assessing the effects of regenerative practices in a series of 12 controlled field trials stretching from Oregon鈥檚 Willamette Valley to Santa Barbara, California.

This research aims to provide farmers with an in-depth understanding of how soil management practices drive soil carbon sequestration while connecting the dots between changes in soil carbon, soil health and grape quality.

 

 

Media Resources

Kat Kerlin, 新澳门六合彩内幕信息 Davis News and Media Relations, 530-750-9195, kekerlin@ucdavis.edu 

Primary Category

Secondary Categories

Environment Food & Agriculture

Tags